9x^2=1/181

Simple and best practice solution for 9x^2=1/181 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2=1/181 equation:



9x^2=1/181
We move all terms to the left:
9x^2-(1/181)=0
We add all the numbers together, and all the variables
9x^2-(+1/181)=0
We get rid of parentheses
9x^2-1/181=0
We multiply all the terms by the denominator
9x^2*181-1=0
Wy multiply elements
1629x^2-1=0
a = 1629; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1629·(-1)
Δ = 6516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6516}=\sqrt{36*181}=\sqrt{36}*\sqrt{181}=6\sqrt{181}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{181}}{2*1629}=\frac{0-6\sqrt{181}}{3258} =-\frac{6\sqrt{181}}{3258} =-\frac{\sqrt{181}}{543} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{181}}{2*1629}=\frac{0+6\sqrt{181}}{3258} =\frac{6\sqrt{181}}{3258} =\frac{\sqrt{181}}{543} $

See similar equations:

| 0,8x⋅0,6x=432 | | x+24=-13 | | 80=-100.x | | |4m+2|=4 | | 5+y/0,2=13 | | -6.2=y+5.1 | | ∣7+5b∣=3 | | (2d+13)(2d−13)=0 | | 2x2-6x+2=0 | | 3/7(y)=9 | | -1/3-6=8-3y | | –3(c+8)=–9 | | 4(x-2)-(2x-4)=7 | | -50+3k=13 | | 11x=22/5 | | 19.64=4.4−4g | | 5+–3y=2 | | –0.18=4d−12.18 | | 0,3x=2,1 | | 0.5x+4=5÷1.2x+8=3 | | x-(x.0,0179)=215,9613 | | 5(x-1)=5x+3-2(-7x-4) | | -5)-x-3)-x+2=1 | | 2(x-3)=3(6-x)+1 | | 2(x+8)=-3x+31 | | 5x-3=14-3x | | 4(u+7)-8u=-12 | | 4(x-8)=-4x+1+8x | | 4(x-8)=-4x+1-8x | | 15-6x=23 | | -2x-9=6x+15=0 | | 7b-7=2b+8 |

Equations solver categories